

satnogs-network

	Installation

	Developer Guide

	Maintenance

	Releasing

	API

Installation

Requirements and info

Python: CPython 3.6+

Operating system: Linux

Prerequisites: docker-compose [https://docs.docker.com/compose/install/] (recommended) or virtualenv [https://pypi.org/project/virtualenv/], npm [https://www.npmjs.com/get-npm].

Git repository: https://gitlab.com/librespacefoundation/satnogs/satnogs-network.git

Clone

Consult the GitLab page [https://gitlab.com/librespacefoundation/satnogs/satnogs-network] on how to clone the repository.

Configuration

Set your environmental variables:

$ cp env-dist .env
$ ${EDITOR} .env

Installation

Quick install

The recommended quick install method is to use Docker Compose.
This method will start separate containers for Django runserver, Celery, MariaDB and Redis.

The Virtualenv quick install method lacks a task queue, uses SQLite as a database and memcached for caching.
It is only recommended for frontend development.

Docker Compose (recommended)

Change into the cloned repository directory:

$ cd <path/to/clone>

To run SatNOGS Network service:

$./satnogs.sh up

To stop SatNOGS Network service:

$./satnogs.sh compose down

To clean-up SatNOGS Network installation:

$./satnogs.sh clean

Virtualenv

This installation method is recommended only for frontend development purposeses.

Change into cloned repository directory:

$ cd <path/to/clone>

To run SatNOGS Network in a virtualenv:

$./satnogs.sh develop

To remove SatNOGS Network virtualenv:

$./satnogs.sh remove

Production install

For production installations, check Deploying Django [https://docs.djangoproject.com/en/3.1/howto/deployment/].

Gunicorn

If gunicorn is used as the WSGI server then to start the application use:

$./bin/djangoctl.sh run

and to bring Celery up:

$./bin/djangoctl.sh run_celery

Developer Guide

Thank you for your interest in developing SatNOGS!
There are always bugs to file; bugs to fix in code; improvements to be made to the documentation; and more.

The below instructions are for software developers who want to work on satnogs-network code [http://gitlab.com/librespacefoundation/satnogs/satnogs-network].

Workflow

When you want to start developing for SatNOGS, you should follow the installation instructions, then…

	Read CONTRIBUTING.md file carefully.

	Fork the upstream repository [https://gitlab.com/librespacefoundation/satnogs/satnogs-network/forks/new] in GitLab.

	Code!

	Test the changes by Running the tests locally and fix any errors.

	Commit changes to the code!

	When you’re done, push your changes to your fork.

	Issue a merge request on Gitlab.

	Wait to hear from one of the core developers.

If you’re asked to change your commit message or code, you can amend or rebase and then force push.

If you need more Git expertise, a good resource is the Git book [http://git-scm.com/book].

Templates

satnogs-network uses Django’s template engine [https://docs.djangoproject.com/en/dev/topics/templates/] templates.

Frontend development

Third-party static assets are not included in this repository.
The frontend dependencies are managed with npm.
Development tasks like the copying of assets, code linting and tests are managed with gulp.

To download third-party static assets:

	Install dependencies with npm:

npm install

	Test and copy the newly downlodaded static assets:

./node_modules/.bin/gulp

To add new or remove existing third-party static assets:

	Install a new dependency:

npm install <package>

	Uninstall an existing dependency:

npm uninstall <package>

	Copy the newly downlodaded static assets:

./node_modules/.bin/gulp assets

Backend development

When running satnogs-network using the docker container the webserver auto-reloads when files get changed.
You need to restart the network-web container only when you change something in settings.py.
All the other changes are directly applied with refreshing the page you are currently working on.

Simulating station heartbeats

Only stations which have been seen by the server in the last hour (by default, can be customized by STATION_HEARTBEAT_TIME) are taken into consideration when scheduling observations.
In order to simulate an heartbeat of the stations 7, 23 and 42, the following command can be used:

docker-compose exec web django-admin update_station_last_seen 7 23 42

Manually run a celery tasks

The following procedure can be used to manually run celery tasks in the local development environment:

	Install the docker-based development environment.

	Start a django-admin shell:

docker-compose exec web django-admin shell

	Run an asnyc task and check if it succeeded:

from network.base.tasks import update_all_tle
task = update_all_tle.delay()
assert(task.ready())

	(optional) Check the celery log for the task output:

docker-compose logs celery

Running the tests locally

To test your changes to the code locally with tox [https://tox.readthedocs.io/en/latest/] in the same way the CI does you can follow these steps:

	Setup a new virtual environment (this shouldn’t be the same virtual environment you might have created for the VirtualEnv Installation):

mkvirtualenv network-test -a .

	Install tox in the same version defined by GITLAB_CI_PYPI_TOX in .gitlab-ci.yml [https://gitlab.com/librespacefoundation/satnogs/satnogs-network/-/blob/master/.gitlab-ci.yml]:

pip install tox~=3.8.0

	Run the tests:

tox -e "flake8,isort,yapf,pylint"

Coding Style

Follow the PEP8 [http://www.python.org/dev/peps/pep-0008/] and PEP257 [http://www.python.org/dev/peps/pep-0257/#multi-line-docstrings] Style Guides.

What to work on

You can check open issues [https://gitlab.com/librespacefoundation/satnogs/satnogs-network/issues].
We regurarly open issues for tracking new features. You pick one and start coding.

Maintenance

Updating Python dependencies

To update the Python dependencies:

	Execute script to refresh requirements{-dev}.txt files:

$./contrib/refresh-requirements.sh

	Stage and commit requirements{-dev}.txt files.

Updating frontend dependencies

The frontend dependencies are managed with npm.
To update the frontend dependencies, while respecting semver:

	Update all the packages listed in package.json:

$ npm update

	Test and copy the newly downlodaded static assets:

$./node_modules/.bin/gulp

	Stage and commit package-lock.json file.

Releasing

Versioning scheme

This repository follows PEP-440 [https://www.python.org/dev/peps/pep-0440/] versioning scheme.
All releases must use a X.Y segment version which signifies a final project release and is compatible with Semantic Versioning [https://semver.org/].
The versions must be numbered in a consistently increasing fashion.
Major X will never need to be increased unless the application is completely rewritten.
Minor Y shall be increased on each release.
A Patch or additional segments, as described in SemVer, shall not be used.

Release procedure

To make a new release:

	Find the next available minor version among the whole set of already present tags in the repository.

	Create an annotated tag from master branch in GitLab with a commit message:

Tag version 'X.Y'

API

SatNOGS Network API is a REST API to get scheduled jobs and post observation data.
This document explains how to use the API to retrieve and post data for your application.

Using API Data

API access is open to anyone.
All API data are freely distributed under the CC BY-SA [https://creativecommons.org/licenses/by-sa/4.0/] license.

API Reference

SatNOGS Network API and SDK Documentation [https://gitlab.com/librespacefoundation/satnogs/satnogs-network/-/jobs/artifacts/ded5673ac693340d38b44d70d2d1758289146a38/file/satnogs-network-api-client/html2/index.html?job=api] contains a full reference of the API.

Index

 nav.xhtml

 Table of Contents

 		
 satnogs-network

 		
 Installation

 		
 Requirements and info

 		
 Clone

 		
 Configuration

 		
 Installation

 		
 Quick install

 		
 Production install

 		
 Developer Guide

 		
 Workflow

 		
 Templates

 		
 Frontend development

 		
 Backend development

 		
 Simulating station heartbeats

 		
 Manually run a celery tasks

 		
 Running the tests locally

 		
 Coding Style

 		
 What to work on

 		
 Maintenance

 		
 Updating Python dependencies

 		
 Updating frontend dependencies

 		
 Releasing

 		
 Versioning scheme

 		
 Release procedure

 		
 API

 		
 Using API Data

 		
 API Reference

_static/minus.png

_static/plus.png

_static/file.png

